Blockchain / AI / ML

AI Data Science (ETH Dozent)

CHF 9,000

exkl. MwSt.

Beginn: 14.04.2025
Ende: 13.06.2025
Dauer: 40 Tage (4 Stunden/Tag)

Trainingsprogramm Fakten

  • Programming for Data Science:
    • Pandas
    • Numpy
  • SQL and Object Relational Databases
  • Data Structures & Algorithms
  • Graphing and Visualization:
    • Plotly
    • Dash
  • Statistics for Data Science
    • Hypothesis Testing
    • Descriptive Statistics
    • Alpha, Beta, Confidence Intervals
  • Probability Distributions and Samples
  • Statistical Inference
  • Forecasting
  • Linear Regression
  • Non-Linear Regression
  • Time Series
    • Decomposition
    • Regression techniques
    • Forecast evaluation
  • Data Manipulation:
    • Imputation
    • Fill methods
    • Data Cleaning and Aggregation
  • Machine Learning with Python
    • Decision Trees
    • Clustering Algorithms
    • Model Evaluation and Cross Validation
    • Feature Engineering and Selection
    • Random Forest
    • Dimensionality Reduction (PCA, KPCA)
  • Natural Language Processing
    • Large Language Models
    • Retrieval Augmented Generation
    • Vector Search and Nearest Neighbor Search
  • Data Visualization
    • Basic Principles of Data Visualization

Prior Knowledge Requirements / Anforderungen

  • At 1 year programming in Python.
  • Solid understanding of basic mathematics (algebra, functions)
  • Prior knowledge of Unix / Bash is helpful (not mandatory)
  • Prior knowledge of SQL or relational databases is useful (not mandatory)

Das Training findet sich täglich vom 08:30 bis 12:30 statt.

Trainings-Dauer: 14.04.2025 bis zum 13.06.2025 (40 Tage)

Feiertage: 18.04, 21.04, 01.05, 29.05, 09.06

Die ersten 3 Tage finden sich am Ort in Circle 6 am Zürich Flughafen statt.

Das Training in den Resttagen (bis zum 13.06.2025) findet sich nur Online statt.

 

Wk. 1
Mon (08:30) 1 hour lecture on Python, Git, and version control.

(09:30) 30 min Practice with Python and Git & 30 min solutions.

(10:30) 1 hour (coding together) tutorial: Setting up SSH Keys, the Project Repository, and exercise repository.

(11:30) Independent work on Homework, reading course materials and “warm-up” exercises.

Tue (08:30) 1 hour Introduction Python, Git, Unix., Bash

(09:30) 30 min setup of git repo on remote and local servers.

(10:30) 1 hour (coding together) tutorial on Git Flow and Management of Merge Conflicts.

(11:30) Independent work on Homework and exercises.

Wed (08:30) Pandas & Numpy Lecture

(09:30) 30 min exercises on Pandas

(10:30) 1 hour (coding together) tutorial in advanced Pandas, introduction to MatPlotLib

(11:30) 1 hour Home exercises and coding practice.

Thur (08:30) 1 hour lecture on major data types, and treatment of various data types.

(09:30) 30 min exercises & 30 min solutions and explanations on the topic of Data types

(10:30) 1 hour (coding together) tutorial on advanced pandas (merge, melt, concat)

(11:30) 1 hour Home exercises and coding practice.

Fri (08:30) 1 hour lecture on more advanced data visualization.

(09:30) 30 min exercises & 30 min solutions and explanations on the topic of advanced data visualization

(10:30) 1 hour (coding together) tutorial advanced data visualization and data analysis

(11:30) 1 hour Home exercises and coding practice.

 

Wk. 2
Mon (08:30) 1 hour lecture on desc. statistics and hypothesis testing

(09:30) 1 hour exercises and solutions on data-driven hypothesis generation and descriptive statistics

(10:30) 1 hour (coding together) workshop: Generating descriptive statistics from fresh datasets

(11:30) 1 hour Project Work and Questions

Tue (08:30) Introduction to Monte-Carlo random sampling

(09:30) 30 min exercises on monte carlo sampling

(10:30) 1 hour (coding together) comparing random samples from different distributions

(11:30) 1 hour Project Work & Questions

Wed (08:30) 1 hour lecture Conditional Distributions

(09:30) 30 min exercises & 30 min solutions and explanations &  1 hour (coding together) tutorial on authentication & User Management

(10:30) 1 hour (coding together) tutorial on implementing conditional sampling

(11:30) 1 hour Project Work & Questions

Thur (08:30) (lecture) Linear Regression (continued)

(09:30) 30 min exercises & 30 min solutions of exercises in multiparameter linear regression

(10:30) 1 hour (coding together) tutorial on implementing linear regression estimation for large datasets

(11:30) 1 hour Project Work & Questions (Add Auth to App!)

Fri (08:30) (lecture): Non-Linear Regression (continued)

(09:30) 1 hour exercises + solutions for non-linear regression techniques on large datasets

(10:30) 1 hour (coding together) tutorial on building non-linear regression forecasting pipeline

(11:30) 1 hour Project Work & Questions

  

Wk. 3
Mon (08:30) Normalization, Imputation and Data Cleaning

(09:30) Exercises in data cleaning: how fast can you clean your dataset?

(10:30) 1 hour (coding together) tutorial: Working with massive datasets

(11:30) Independent work on Projects

Tue (08:30) Advanced data transformations for addressing multicollinearity

(09:30) Exercises in multicollinearity: when to transform?

(10:30) 1 hour (coding together) advanced data imputation

(11:30) 1 hour Project Work & Questions

Wed (08:30) Dimensionality Reduction + Clustering

(09:30) 1 hour exercises PCA, kPCA

(10:30) 1 hour (coding together) tutorial on dimensionality reduction and clustering

(11:30) 1 hour Project Work & Questions

 

Wed (08:30) 1 hour lecture on Time-Series data: How is it different?

(09:30) 1-hour exercises on manipulation of dependant datasets

(10:30) 1 hour (coding together) tutorial on timeseries datasets in python (pandas)

(11:30) 1 hour Project Work & Questions

 

Fri (08:30) 1 hour lecture on Time-Series regression

(09:30) 1-hour exercises ARM and ARIMA regression models

(10:30) 1 hour (coding together) tutorial on timeseries datasets in python (pandas)

(11:30) 1 hour Project Work & Questions

 

Wk. 4
Mon (08:30) Lecture on Assessing Classification Accuracy

(09:30) 30 min exercises + 30 min solutions Classification Accuracy (Predicted vs. Observed, ROC, MSE)

(10:30) 1 hour (coding together) tutorial: Setting up a classification pipeline

(11:30) 1 hour project work and questions

Tue (08:30) 1 hour lecture on Random Forest

(09:30) 30 min exercises + 30 min solutions in using the Random Forest Algorithm (Machine Learning)

(10:30) 1 hour (coding together) tutorial: Preparing data for Random Forest

(11:30) Project work and questions

Wed (08:30) 1 hour lecture on Bagging and Ensemble methods

(09:30) 30 min exercises + 30 min solutions on Machine Learning: how to use machine learning methods ?

(10:30) 1 hour (coding together) tutorial: Setting up a machine learning model

(11:30) 1 hour project work and questions

Thur (08:30) Data Structures and Algorithms

(09:30) 1 hour data-structures & algorithms

(10:30) 1 hour (coding together) tutorial on Data Structures and Algorithms (Technical Interview Prep)

(11:30) 1 hour Project Work & Questions

Fri (08:30) Technical Interview Drilling (all participants practice job interviews + reviewing interviews)

(11:30) 1 hour Project Work & Questions

 

Wk. 5
Mon (08:30) 1 hour lecture on Web-Development and Dash

(09:30) 30 min exercises + 30 min solutions in Dash operations

(10:30) 1 hour (coding together) tutorial: Setting up a Dash Application and visualizing a graph

(11:30) Setup first deployment (Heroku)

Tue (08:30) 1 hour lecture on Plotly and advanced Dash Callbacks

(09:30) 30 min exercises in Dash data visualization

(10:30) 1 hour (coding together) tutorial: integrating statistical algorithms with a Dash Application

(11:30) Setup a second deployment (Heroku)

Wed (08:30) Introduction to REST and APIs

(09:30) 30 min exercises & 30 min solutions and explanations with Integrating REST api into pipeline

(10:30) 1 hour (coding together) tutorial – Adding API data to our Dash app

(11:30) 1 hour Project Work & Questions

Thur (08:30) Error Handling and Dash pipeline integration

(09:30) 30 min exercises & 30 min solutions and explanations with Integrating REST api into pipeline

(10:30) 1 hour (coding together) tutorial – Adding user selections to your Dash application

(11:30) 1 hour Project Work & Questions

Fri (08:30) Lecture on forecasting and confidence intervals: Drawing conclusions from your datasets.

(09:30) 1 hour exercises and solutions in data forecasting

(10:30) 1 hour (coding together) tutorial on integrating forecasting into your Dash Applications

(11:30) 1 hour Project Work & Questions

 

Wk. 6
Mon (08:30) Feature Engineering for Random Forest

(09:30) 30 min exercises in implementing Feature Engineering Pipeline

(10:30) 1 hour (coding together) feature engineering on a fresh dataset

(11:30) 1 hour project work and questions

Tue (08:30) Random Forest Deep Dive (Random Forest for continuous variables)

(09:30) 30 min exercises in Random Forest

(10:30) 1 hour (coding together) tutorial: Visualizing the results of your Random Forest

(11:30) Setup a training pipeline

Wed (08:30) Deep Focus on advanced topics in Statistics

(09:30) 30 min exercises & 30 min solutions and explanations &  1 hour (coding together) tutorial on regression, revisited

(10:30) 1 hour (coding together) tutorial – integrating regression in your feature engineering pipeline

(11:30) 1 hour Project Work & Questions

Thur (08:30) Advanced Dash Operations (integrating User selections with your Machine Learning algorithm)

(09:30) 1 hour exercises on Statistics Re-Cap

(10:30) 1 hour (coding together) tutorial on challenge topics in statistics

(11:30) 1 hour Project Work & Questions

Fri (08:30) Technical Interview Drilling (all bootcamp participants practice job interviews + reviewing interviews)

(11:30) 1 hour Project Work & Questions

 

Wk. 7
Mon (08:30) Introduction to Large Language Models

(09:30) 30 min exercises in Vector Operations

(10:30) 1 hour (coding together) Installing and Fine-Tuning a Language Model

(11:30) 1 hour project work and questions

Tue (08:30) Introduction to Retrieval Augmented Generation (RAG)

(09:30) 30 min exercises in Vector Search

(10:30) 1 hour (coding together) tutorial: Building a Vector Search Database

(11:30) 1 hour project work and questions

Wed (08:30) Introduction to Nearest-Neighbor Search Algorithms + Intro to FAISS

(09:30) 30 min exercises & 30 min solutions and explanations

(10:30) 1 hour coding time – Nearest Neighbor Search Challenge!

(11:30) 1 hour Project Work & Questions

Thur (08:30) Advanced RAG Principals + Hybrid RAG

(09:30) 1 hour exercises on Statistics Re-Cap

(10:30) 1 hour coding time – Nearest Neighbor Search Challenge!

(11:30) 1 hour Project Work & Questions

Fri (08:30) Advanced RAG Principals + Hybrid RAG

(09:30) 1 hour exercises on Statistics Re-Cap

(10:30) 1 hour (coding together) tutorial: Building an advanced hybrid RAG pipeline from scratch

(11:30) 1 hour Project Work & Questions

 

Wk. 8
Mon (08:30) Technology Lecture: Docker

(09:30) 30 min exercises creating docker containers

(10:30) 1 hour (coding together) feature engineering on a fresh dataset

(11:30) 1 hour project work and questions

Tue (08:30) Technology Lecture: Deployment

(09:30) 30 min exercises in Deployment of docker containers

(10:30) 1 hour (coding together) tutorial: Building and deploying a dash app from scratch

(11:30) 1 hour project work

Wed (08:30) Technology Lecture: Postgres and SQL Alchemy

(09:30) 30 min exercises in SQLAlchemy + 30 solution review

(10:30) 1 hour (coding together) tutorial: Database query practice

(11:30) 1 hour project work

 

Thur (08:30) Technology Lecture: BigQuery + Spark + Big Data Methods

(09:30) 2 hour technical job-interview question practice

(11:30) 1 hour Project Work & Questions

Fri (08:30) Technical Interview Drilling (all participants practice job interviews + reviewing interviews)

(11:30) 1 hour Project Work & Questions

Fragen zum Programm?

AI Data Science (ETH Dozent)

Jetzt Anmelden

Blockchain / AI / ML

AI Data Science (ETH Dozent)

#010202

14.04.2025

13.06.2025

CHF 9,000

exkl. MwSt.

Ort: Circle 6
Zürich Airport
Dauer: 40 Tage (4 Stunden/Tag)